
Guy Shattah, Christoph Lameter
Linux Plumbers Conference 2017

Contiguous memory allocation in Linux user-space

© 2016 Mellanox Technologies 2

Contents

▪ Agenda
• Existing User-Space Memory Allocation Methods
• Fragmented Memory vs Contiguous Memory
• Performance
• Memory Pinning
• Proposed Solutions
• Suggested Implementations
• Summary

© 2016 Mellanox Technologies 3

Existing User-space Memory Allocation Methods

▪ Existing memory allocation techniques
• On the stack: alloca() / function stack
• On the heap: malloc()/calloc()/realloc()
• Memory mapping: mmap(): Anonymous memory or with file descriptor
• Pre-allocation (i.e. static)

Q: What do these techniques have in common?

▪ Fragmented memory
• Allocated memory resides on separate pages.
• Virtually: Memory seems to be contiguous to the user.
• Psychically : Pages are spread over all the ram.

▪ Contiguous memory:
• Psychically : A sequence of memory pages without holes.
• Virtually: the same.
• No existing userspace API allocates contiguous memory.

© 2016 Mellanox Technologies 4

Is Fragmented Memory Bad for Us?

Is Fragmented Memory Bad for Us?

▪ Software Solution:
• Virtually mapped contiguous areas.

MMU Maps: Virtual Address → physical address
• In Linux: Demand paging and reclaim.

▪ Hardware Solution:
• IOMMU serves as MMU for devices
• DMA can do vector I/O

- Gather data from fragmented memory blocks
- Scatter data to fragmented memory blocks
- Hence DMA scatter/gather

So why bother?

© 2016 Mellanox Technologies 5

Performance Comparison: Memalign vs Contiguous

ib_read_bw
size memalign() contiguous pages improvement

2 8.74 10.65 22%

4 14.83 23.47 58%

8 35.64 48.52 36%

16 76.10 96.02 26%

32 141.45 195.92 39%

64 406.52 383.80 -6%

128 543.58 780.68 44%

256 1,018.24 1,545.88 52%

512 2,003.87 3,133.44 56%

1,024 4,000.76 4,761.60 19%

2,048 5,837.46 7,216.94 24%

4,096 7,747.90 9,077.66 17%

8,192 9,224.03 11,140.40 21%

16,384 9,109.37 11,561.70 27%

32,768 9,133.99 11,647.37 28%

65,536 9,133.65 11,662.10 28%

131,072 9,179.69 11,694.01 27%

262,144 9,150.13 11,691.50 28%

524,288 9,149.54 11,706.13 28%

1,048,576 9,149.36 11,714.85 28%

2,097,152 9,161.54 11,715.61 28%

4,194,304 9,176.27 11,716.65 28%

8,388,608 9,199.97 11,716.78 27%

Mellanox ConnectX-5 Ex, EDR, back-to-back
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
MLNX_OFED_LINUX-4.1-4.0.8.0

© 2016 Mellanox Technologies 6

Requirement: Contiguous Memory Area

▪ Contiguous Memory Area

• Scatter/gather has performance issues.
• Better cache hits.

© 2016 Mellanox Technologies 7

Memory pining

Memory Pinning and Compaction Thread

▪ DMA Operations Typically Require Memory Pinning
• Memory pinning prevents kernel from:

- Swapping out memory.
- Relocation of pages [change mapping of Virtual page -> physical page]
- Replacing small pages with huge pages (THP)
- Hot Plug
- Other compaction thread issues?

▪ How is memory pinning implemented?
• Increasing the RefCount on a page struct .

 - Userspace - Using sub-system specific API
 - Kernel - memory registration in the RDMA subsystem.

© 2016 Mellanox Technologies 8

Huge Pages

 Solution #1: Using Huge / Giant Pages

▪ Huge Pages:
• mmap using the MAP_HUGETLB flag
• mmap fails if no huge pages are available.
• Memory continuity is guaranteed (within a single page).
• Memory has to be divided to several memory pools (4K,2M,1G on x64)
• Requires Memory reservation.

Advantage:
• Allocated memory is less fragmented:

▪ Disadvantage :
• Pool allocation requires root-user intervention.
• Pool size has to be pre-determined.
• Memory continuity is not guaranteed (over multiple pages).

kernel needs to be built with the CONFIG_HUGETLBFS (present under "File systems") and CONFIG_HUGETLB_PAGE

© 2016 Mellanox Technologies 9

Transparent Huge Pages

 Solution #2: Allocating Huge Pages On the Fly

▪ Transparent Huge Pages (THP):
• mmap with a hint from madvice (MADV_HUGEPAGE flag)

instructs the kernel to try construction of huge pages on the fly.
• Fall back to small pages when huge pages not available.

▪ Advantages:
• Doesn’t require root-user intervention.
• Doesn't require memory pool reservation.

▪ Disadvantage :
• THP Allocation isn’t guaranteed to succeed (but there is a fallback).
• Memory continuity is not guaranteed (over multiple pages).
• Background CPU work: Consolidate small pages and replace small ones to huge ones.
• Transparent huge pages are for performance optimization only.

kernel needs to be built with the CONFIG_HUGETLBFS (present under "File systems") and CONFIG_HUGETLB_PAGE

© 2016 Mellanox Technologies 10

The Continuous Memory Allocator

Implementation of Contiguous Memory Allocator
in User Space Using Huge Pages

▪ Availability:
• Huge pages might not be configured on the machine.
• When configured – pool is limited.

▪ Non-continuity:
• Allocation of multiple huge pages does not guarantee continuity.

© 2016 Mellanox Technologies 11

The Continuous Memory Allocator

Solution #3: Specific HW support – ARMv8-A

▪ Contiguous block entries.
• ARMv8-A architecture provides a feature known as contiguous block entries - efficiently uses TLB space.
• Each TLB entry contains a contiguous bit. When set, bit signals to TLB that it can cache a single entry

covering translations for multiple blocks.
• The TLB can cache one entry for a defined range of addresses. Makes it possible to store a larger range of

Virtual Addresses within the TLB than is otherwise possible.

▪ The contiguous blocks must be adjacent and correspond to a contiguous range of Virtual
Addresses.
• 16 × 4KB adjacent blocks giving a 64KB entry with 4KB granule.
• 128 × 16KB adjacent blocks giving a 2MB entry for L3 descriptors when using a 16KB granule.
• 32 × 64Kb adjacent blocks giving a 2MB entry with a 64KB granule.
• 32 × 32MB adjacent blocks giving a 1GB entry for L2 descriptors

© 2016 Mellanox Technologies 12

The Continuous Memory Allocator

Solution #4: Allocating Physically contiguous Memory on Bootup

▪ CMA: Contiguous Memory Allocator
• Unavailable for user-mode.
• Kernel code can request allocation of contiguous memory.
• CMA requires memory reservation during machine startup.
• CMA has to be integrated with the DMA subsystem:
• CMA lets moveable pages use reserved area. Prioritizes clients with special needs.
• GCMA (Guaranteed CMA) - an improvement over CMA (latency, moving other process’ pages)
- Uses a client to allocate and vacate memory.

▪ Issues:
• Memory reservation technique.
• Kernel-Space only.

▪ Would it be possible to implement a user space API for CMA?

© 2016 Mellanox Technologies 13

Proposed Solution

 The mmap MAP_CONTIG flag

▪ Flag instructs mmap to allocate contiguous memory
▪ Idea was first introduced 13 years ago

 (in IEEE Std 1003.1, 2004 Edition as POSIX_TYPED_MEM_ALLOCATE_CONTIG.)
• Originally implemented on small number of devices of which most are embedded devices, e.g., BlackBerry.
• Has since been forgotten.

© 2016 Mellanox Technologies 14

Proposed solution

 The mmap MAP_CONTIG flag

▪ Populates all pages tables for a mapping
✓ Hence implies MAP_POPULATE

• Anonymous memory allocation:
p = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_CONTIG, -1, 0);

• Or with a file descriptor:
int fd = open("/dev/zero", O_RDWR);
p = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE | MAP_CONTIG, fd, 0);

© 2016 Mellanox Technologies 15

Suggested Implementation

 The mmap MAP_CONTIG flag – Suggested Implementations

▪ System tries to use largest available memory blocks to construct contiguous memory area.

▪ Use case: user requested 3,072Kb (3M)
• On supported machines, where it is possible to allocate contiguous memory areas

larger than a single page:
- Look for contiguous memory block of 4,096Kb, put the spare 1,024 back in the pool (256 pages, 4Kb each).

• Divide request:
- Where larger allocation not supported:
- i.e.: Allocate 2,048 (one huge page) and than allocate multiple small pages which sum to 1,024.

▪ Perhaps existing defragmentation passes could attempt to make
those areas as contiguous as possible when the pass attempts
to constructs THPs?

© 2016 Mellanox Technologies 16

Summary

▪ Suggested Implementations
• Allocate contiguous areas larger than a single page (on supported architectures).
• Improve existing defragmentation passes to help make memory areas as

contiguous as possible when the pass attempts to constructs THPs.

▪ Additional Suggestions
• Add userspace api for CMA.
• Add madvise hint to suggest memory should be contiguous.

© 2016 Mellanox Technologies 17

Discussion

Q&A

Thank You

